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ABSTRACT 

Some applications are given of the abstract F. and M. Riesz theorem 
to ideals. 

1. Applications of measures orthogonal to function algebras involving the 

abstract F. and M. Riesz theorem frequently require special hypotheses con- 

cerning those measures which are completely singular [5]. The present note 

is devoted to one set of problems--those concerning closed ideals--in which 

completely singular elements play no role. (We shall assume the reader is familiar 

with [4, 5], and most of 6ur notation will be that of [5].) 

Let I be a closed ideal in the closed subalgebra A of C(X), X compact, and 

suppose A contains the constants. Trivially C + I is a closed subalgebra of C(X), 

and the spectrum d/c+ I of C + I consists of Jga  with the hull of I identified 

to a point. In all that follows we shall let q5 o be that point, the element of ,//fc+i 

with kernel I ,  and M6o = M~bo(C + I) will represent the probability measures 

on X representing ~bo on C + I (a set which includes M~(A) for each ~b in hull I ) .  

Finally P~,(A) will denote the Gleason part containing q5 (for the algebra A); 

since q~ defines an element of ~ ' c + i  as well, P6(C + 1) may well differ from Pe,(A) 

(see example 1.8.). 
Our fundamental observation is the simple 

LEMMA 1.1. Suppose # _LI and # is M¢o(C + I)-singular. Then # A_A. 

The proof is a simple application of the abstract Forelli lemma [5, 1.2]. Byregula- 

rity # is carried by a or-compact M6o-null set, so that Forelli's result shows there is 

a sequence {fn} in the unit ball of C ÷ I with f n ~  1 a.e. [#l ,  while f ,  ~ 0 a.e. 2, 
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al l  2 e M~o. Since 2(f , )  = ¢o(fn) ~ 0 ,  we can replace f ,  by g,  = f ,  - qSo(f, ) and 

obtain a bounded  sequence in C + / - - i n  fact in I since ¢o(gn) = 0 - - f o r  which 

- ,  1 a e But by domina ted  convergence II - II + 0 while grit A_ A 

since g,A ~ I; thus p _L A as asserted. (2) 

REMARK 1.2. M o r e  general ly the a rgument  shows tha t  for  any M¢o-singular 

measure  p there is a bounded  sequence {g,) in I with II ~ II 0. 

COROLLARY 1.3. Suppose ¢ ~ ~ g a / h u l l  I ( =  ~ ' c + t \ ( ¢ o } )  is not in the Gleason 

part P~o(C + 1). Then M~(C + I) = M~(A) ,  and for  2 therein H z ( c  + 1,4) 

= H2(A,2 ) .  

The  H E assertion fol lows f rom the first by [4,1.1] .  Of  course Me(A) ~ M~(C + I ) ,  

so suppose 2 E M¢(C + I ) .  Since ~b ~ Pq~o(C + I ) ,  2 is M~o-singular and by our  

R e m a r k  there is a sequence {g,} in I with [l gn 2 - 2 I[ ~ 0 .  But ~b(g,) = 2(g~) 

4(1) = 1 so tha t  

gn 2 - 4  ~ 0 ,  
¢(g,,) 

while g,2lC(g,) represents ~b on A: 2[(g, al¢(g,)] = ¢[g,  aldp(g,)] = ¢(a) ,  a c A .  

Thus  2 represents ~b on A .  

Our  next  appl icat ion of 1.1 shows f = u + iv ~ A (u, v real)  lies in I if  bo th  u 

and v are app rox imab le  by elements of  Re I ,  in fact in a rather  weak sense. I t  

is an obvious  corol la ry  of  a recent result  of  Lumer  [6] which asserts that  

lls+/11 --< 4sup(12(f)l:2~M+o) , S~A. 

However  our p roo f  yields a s tronger  specialization which does not  fol low f rom 

this(3) (1.5 below).  

(2) At only one point (1.4 below) do we require A really to be an algebra rather than a closed 
subspace containing I with AI c L But no generality would be gained by the weaker hypothesis 
since then I is an ideal in the sub-algebra B generated by A, and our results for B yield the cor- 
responding results for A. 

(3) Lumer obtains his result as a side product of an investigation of semi-inner product 
methods in non-commutative Banach algebras, but a purely function algebra proof has since 
been found by Cole. Note that 1.4 yields a general extension of the very special [5, 3.3]: closed 
ideals are determined by their orthogonal probability measures. In accord with [2, 3] (but not 
[4, 5]) we take H~(A,2) to be the w* closure of A in L~°(2). 
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THEOREM 1.4. f = U + iv e A is in I i f  and only i f  f ± Moo. 

Before proceeding to the proof we need one observation: the argument of 

Gamelin and Lumer [3, I2.6, p. 125-6] applies (with Re(C + I) in place of R e H  2) 

to show that when u l Moo there is a real Borel function w on X for which 

e t ( "+ iW)eH~(C+I ,2 )  for all 2 in Moo, t e R ;  indeed u _LM0o implies as 

usual [2] 

sup{Re~bo(f): R e f  =< u,  f e  C + I} = 0 

= inf{Re~o(f) :  Re/=> u,  f ~ C  + I) 

! t !  and this allows one to choose u ' , u ~  Re(C + 1), u, < u < u, as required there. 
(Note that the non-negative (or, depending on n, non-positive) functions u,+ 1 - u. 

have norms in L1(2)independent  of 2 ~ Moo, since I [ u , + l -  u. 111 = 

+ j" u,+ 1 - u, d2.) Finally the Ahern-Sarason estimate 

f ] e t ( " + ~ W ) - l [ 2 d X = f e Z ' " - l d 2 = O ( t 2 ) , w h i l e ~  e t ~ " + i W ) - l d 2 = O  

leads as usual to the fact that u + i w ~ H 2 ( C  + 1,2) for all 2eMoo,  with 

yu + iwd2 = O. 

To proceed to the proof of 1.4 note that we need only show f ~  C + I ,  since 

then f .1_ Moo implies q~o(f) = 0. By the abstract F. and M. Riesz theorem each 

element of (C + I)" has its Moo-singular and Moo-absolutely continuous com- 

ponents in (C + I ) " ,  and by 1.1 the former are all _kf. Thus we need only see 

I t ( f )  = 0 if # e (C + I ) ' ,  # ,~ Moo. 

By our observation u + iw e H2(C + I, 2), and e t(u+iw) ~ H°°(C + I, 2),  2 ~ Moo , 

t ~ R.  If  2 is an extreme point of Moo then a bounded real Borel function g with 

g2.1_I is necessarily constant a.e. 2: for otherwise 2 = ½(1 - eg)2 + ½(1-eg)2 

represents 2 as a convex combination of distinct elements of M,o for e > 0 small. 

On the other hand ett"+iw)2 _kI ~ e - t f I ,  so 

and thus 

et("+iW)e-tI2 = eit(w-v)~, _[_ I 

(e u(~-v) +_ e-~t(~-v))2 _1_ I .  

For 2 extreme this implies e ~t(~-~) is constant a.e. 2, and so, as is easily seen, 

that w - v = c, a.e. 2. Since 0 = ~ w - vd2 = c, w = v a.e. 2 for all extreme 2, 

hence for all their finite convex combinations. So f  = u + iv = u + iw e H2(C + 1,2) 
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for  a w* dense subset of  M4, o , hence for all 2 in M4, o by [4,1.3].  Thus by [5, 2.3] 

there is a sequence {f,} in the [l f [l-ball of  c + i with f ,  ~ f a.e. 2 ,  all 2~  M4, o, 

which implies 0 = / z ( f , )  ~ I t ( f )  by  dominated convergence since It ,~ M4, o , 

complet ing our  proof.(4) 

As noted the p r o o f  yields 

THEOREM 1.5. Let • = h u l l / ,  and suppose that for each 2 in M4, o (or just 

in a w* dense subset of M~o, its set of extreme points) there is a ~9 ~ and 

a 2' in M4,(A ) with 2 , 2 '  not mutually singular. Then a n y f  = u + i v e A  which 

vanishes on ~ and has u 3_M4, o is in I .  

Given 2 e M ~ o  and 2 '  as above we have 4 '  ~Meo and u + iw (as in 1.4) an 

element of  H2(C + 1 ,2 ' )  = HZ(A,2') .  The latter also contains f = u + iv, so 

v - w is a real valued element o f  H2(A ,2 ' ) ,  hence 0 a.e. 2 ' :  for  f ( v  - w)2d2 ' 

( f  v - wd2') z = 0 since f(~b) = 0 and ywd2' = 0 for  4'  in M4, o. 

As in our  p r o o f  o f  1.4 we know w - v = ca a.e. 2 ,  and since 2 and 2 '  are not  

mutual ly  singular(s) cz = 0.  By hypothesis, this holds for  a w* dense set of  2 

in M~o, and since c z = f w -  vd2 = - fvd2 on M4,o, 2 ~ c z is w* continuous,  
e e hence --- 0 on M4, o. So w = v a.e. 4 ,  all 2 ~ M~o, and the final por t ion of  the 

p roo f  o f  1.4 shows f ~ C  + I .  So f ~ I  since f vanishes on • = h u l l / ,  while 

is necessarily non  void. 

An  easier result of  the same sort is(6) 

THEOREM 1.6. Suppose L is a closed subspace of A containing the closed 

ideal I .  Then f ~  A lies in L if  it lies in the L2(2)-closure of L for each 2 ~ M4, o . 

Since (C + I )L  ~ L + I = L, L is a (C + / ) - m o d u l e  so It _I_L has its M4, o- 

singular and absolutely cont inuous components  or thogonal  to L by [5, 3.1]. 

As before the former  is o r thogona l  t o f b y  1.1, so we want  to see # ( f )  = 0 if It _1_ L, 

It <~ M4, o • 

By [-5, 2.2] there is a sequence f n 6 L  with supu4,o f [ [ f - f . I  2d2 ~ 0, and by 

[5, Remark  p. 115] there is a subsequence {f.j} and a sequence {aj) in the unit 

ball  o f  C + I with [lajf.jll < ]l f i t ,  a j f . j ~ f  a.e. 2, all2~M4,o. S i n c e a J . ~ L ,  

0 = It(aJ. j)  ~ It(f) again by dominated convergence and the fact that  It ,~ M4, ° . 

(4) When X is metric 1.4 shows there is a single 20 in M4, o for which f ~  I iff u and v each lie 
in the La(20)-closure of Re1. Indeed if2. is a w* dense sequence in M4, o and 2o = Z2-n2. then 
since u lies in the L1(2.)-closure of ReI, f ud2,, = O, whence u _1_ M~o. 

(5) As is evident at this point we could equally well assume we have a chain 21, .. 2. in M~o 
with (2.2~ + 1) and (2, 21), (2., 2') pairs of not mutually singular measures. 

(6) Lumer's methods also yield this result [6]. 
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If F c X is a peak set for I ,  with h ~ I peaking on F ,  then 2F = lim 2 (h") = 0, 

;t ~ M0o; and the same applies to an intersection of peak sets. As a final observa- 

tion on ideals, really unrelated to the preceding results, we want to record 

PROPOSmON 1.7. I f  F c X is an intersection of A-peak sets which carries 

no element of Moo then F is an intersection of I-peak sets. 

Let F = c3 F~, with F~ a peak set for A. Then we can find a finite intersection 

C3 F~, which carries no element of M0o by virtue of the w* compactness of M0o. 

Thus F is an intersection of peak sets of A each carrying no element of Moo, 

and it suffices to prove 1.7 when F is an A-peak set. 

So let f ~  A peak on F .  The proof  of Bishop's peak set lemma [1, p. 631; 2] 

shows that if we have h ~ I with h I F =  1 then there is a g ~ A with gh peaking 

on F .  Now I] F is an ideal in the closed subalgebra A IF of C(F), and if no such 

h exists there is a ~b ~ JC/aIF annihilating I IF. But then F carries a probability 

measure 2 representing ~b, which of course lies in M0o. 

Example 1.8. The following shows that A-parts and C + I-parts may differ 

(even when d / a  = JOt'c+1). A more complicated example was pointed out to 

me earlier by Cole, Gamelin and Garnett. 

Let A be the disc algebra, X = T 1 , and 20 normalized Haar measure. Let I 

be the closed ideal exp[(z + 1)/(z - 1)] M,  where M is the maximal ideal of 

functions vanishing at 1 (cf. [6, pp. 83-84]) so JC/c+x = JC/a. Since I ~ M we 

have a 2 in Moo, 2 # 61, the unit point mass at 1, by footnote 2 say. So j2 ¢ 0 

for some j e I ,  and since j2  _I_ A so that j2  ~ 20, we conclude that 2 and 20 are 

not mutually singular. 

Thus 0 e  Pe~o(C + I) ,  while Poo(A) = {1}; indeed Poo(C + 1) is precisely the 

open disc plus 1, as is easily seen. We should perhaps note that 1.5 cannot be 

applied here since Moo(A ) = {61}; it would be applicable to an ideal with hull 

¢ T 1 however. 

2. We conclude with a fact unrelated to ideals. 

THEOREM 2.1. Suppose A c B are closed subalgebras of C(X) containing 

the constants, (o ~ Jigs, and a w* dense set of  2 in Moo(A ) are Mo(B)-absolutely 

continuous. I f  f = u + iv ~ B has u constant on M o(A ) (in particular if  u ~ Re A) -  ) 

then f e H 2 ( A , 2 ) ,  all 2~ Mo(A). 

For the proof  we can assume ~b(f) = 0, and thus u _1_ Mo(A ). By our obser- 

vation after 1.4 there is a real Borel function w with u + iw ~ H2(A, 2), all 2 in 

Mo(A), with f u + iwd2 = O. 
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N o w  for  2 e M~,(B) c M~,(A) we have u + iv and u + iw in H2(B, 2),  so v - w 

is a real element o f  H2(B,2)  o f  mean 0, hence = 0 a.e. 2: for  j ' ( v - w ) Z d 2  

= ( f v  - wd2) 2 = 0. Thus {x :w(x )  ~ v(x)} is M,(B)-nul l .  

Fo r  2 in our w* dense subset o f  M~(A)  we have f = u + iv = u + iw in L2(2 ) 

so f ~ H 2 ( A , 2 ) ,  and this extends to all 2 in M~(A)  by [4, 1.3]. 
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